Abstract
Here is presented a discussion of the stability problem of preliminarily bent circular perforated plates, perpendicular to which the motion of heat takes place. The problem is considered withinthe framework of the geometrically nonlinear, but physically linear theory.
The solution is found by means of the energy method. Two critical states are distinguished and the parameters characterizing the above states are determined.
A numerical example is given.
References
Cz. WOŹNIAK, Bending and stability of plates with lattice structure, Arch. Mech. Stos., 6, 18 (1966).
Cz. WOŹNIAK, Load-carrying structures of the dense lattice type, Arch. Mech. Stos., 5, 18 (1966).
3. [in Russian]
E. O. WATERS, Transactions ASME; 57 (1934), 627 - 636.
Cz. WOŹNIAK, Stany krytyczne nierównomiernie ogrzanych wstępnie wygiętych płyt kolistych, Arch. Inż. Lad., 3 (1963).
P. KLEMM, Cz. WOŹNIAK, Perforated circular plates under large deflections, Arch. Mech. Stos., 1, 19 (1967).
Cz. WOŹNIAK, Load-carrying structures of the dense lattice type, Arch. Mech. Stos., 5, 18 (1966).
3. [in Russian]
E. O. WATERS, Transactions ASME; 57 (1934), 627 - 636.
Cz. WOŹNIAK, Stany krytyczne nierównomiernie ogrzanych wstępnie wygiętych płyt kolistych, Arch. Inż. Lad., 3 (1963).
P. KLEMM, Cz. WOŹNIAK, Perforated circular plates under large deflections, Arch. Mech. Stos., 1, 19 (1967).