Parametrization of Bending Moments in Creep Analysis of Circularly Symmetric Simply Supported Plates

Downloads

Authors

  • J. Białkiewicz Technical University of Kraków, Kraków, Poland

Abstract

This work presents the method of the solution, based on the parametrization of the bending moments, for annular simple-supported plates. As a result of this parametrization, the solution of the boundary problem is reduced to the solution of three ordinary differential equations of the first order. The set of equations separated with respect to the derivative of unknown functions makes it possible to apply the standard Runge-Kutta integral procedures. The time of the first cracks will be calculated using the Kachanov-Rabotnov damage law.

References

F. K. G. ODQVIST, Mathematical theory of creep and creep rupture, Oxford 1966.
N. N. MALININ, Steady creep of circular plates loaded symmetrically, MWTU, 26, Mashgiz, 1953 [in Russian].
N. N. MALININ, Fundamentals of calculations with respect to creep, Mashgiz, 1948 [in Russian].
L. M. KACHANOV, Theory of creep, GIF-ML, Moscow 1960 [in Russian].
W. L. BAZANOV et all., Calculation of construction with respect to temperature influence, Maszinostr., Moscow 1969 [in Russian].
V. HODGE, Creep behaviour of circular plates, J. Appl. Mech., 25, 1, 1958,
W. W. SOKOŁOWSKI, Theory of plasticity, Moscow 1969 [in Russian].
F. K. G. ODQVIST, J. HULT, Some aspects o creep rupture, Arch. Physic, 19, 1961.
L. M. KACHANOV, Fundamentals of fracture mechanics, Nauka, Moscow 1974 [in Russian].
J. BIAŁKIEWICZ, S. PIECHNIK, Parametrization of the Odqvist's creep law in the circular-symmetrical problem, Eng. Trans., 25, 4, 1977.
S. PIECHNIK, J. BIAŁKIEWICZ, Ductile-brittle creep, rupture of circularly symmetric discs, Bull. Acad. Polon. Sci., serie Sci. Techn., 27, 7, 1979.