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Magnetic levitation compressors are critical for producing large flow rates of superfluid he-
lium. The steady operation of these compressors depends heavily on the unbalanced response
characteristic of their rotors. Previous research, utilizing traditional unbalance response calcu-
lation methods, primarily focused on displacement response while neglecting current response.
This paper transforms the finite element model of the magnetic levitation rotor into a state-
space representation. It then investigates the influence of vital parameters on both displacement
and current responses. The results of speed-up experiment carried out on the compressor pro-
totype test rig agree with the simulation results. The study indicates that adjusting control
parameters can suppress vibration and simultaneously reduce control current. This work is
essential for the application of compressors in the superfluid helium system.

Keywords: electromagnetic bearing; displacement response; current response; state-space
method.

Notations

A – magnetic pole area,
A – state matrix,
B – input matrix,
C – output matrix,
D – feedthrough matrix or damping matrix,
e – eccentricity of the unbalance mass,
e – displacement deviation signal,
f – cut-off frequency,
f – force,
F – generalized force extended by conversion matrix,
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G – gyro matrix of the rotor model,
i – bias current,
K – gain,
Kp – proportional gain,
Kd – derivate gain,
K – stiffness matrix,
m – unbalanced masses,
M – mass matrix,
N – coil turns of magnetic bearing,
q – displacement vector,
T – time constant,
T – conversion matrix,
Tre – regular modal matrix applying to decouple and normalize the FEM model,
x0 – bias displacement,
x – state vector,
y – output vector.

Greek characters
µ0 – vacuum permeability,
ξa – attenuation constant,
ϕ – phase angle of the unbalanced mass,
ω – rotor rotation speed, or corner frequency.

Subscripts
a – amplifier,

amb – active magnetic bearing,
c – controller,
cl – closed loop system,
d – differential term,
i – integration term, or control current,
ol – open loop system,
p – proportional term,
r – rotor model, or reference input,
re – simplified system matrixes,
rf – input matrix corresponding to disturbance force,
ri – input matrix corresponding to control current,
s – sensor,
u – unbalanced mass force.

1. Introduction

Super-fluid helium has increasingly been applied in fields such as high-energy
physics, nuclear fusion, and superconductivity. The only way to obtain 2K super-
fluid helium on a large scale nowadays is by using multistage centrifugal cold
compressors to reduce the pressure and temperature of the sub-cooling tank [1].
Due to the unique operating conditions of cold compressors, traditional grease-
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lubricated bearings and gas bearings struggle to meet the support requirements.
Active magnetic bearings (AMBs) levitate the rotor using control current, mak-
ing them highly suitable for extreme conditions such as clean environments,
vacuum, and super-high speeds [2]. AMBs are currently the optimal support
devices for cold compressor rotors in superfluid helium systems [3].

The compressor’s smooth operation is crucial for the successful commission-
ing of the superfluid helium system. Researchers have developed various control
methods to realize the rotors’ stable suspension and rotation [4–6]. However,
proportional integral derivative (PID) control remains the simplest and most
effective method [7–9]. Simply applying a PID controller can ensure the smooth
rotation of a rigid rotor [10].

The unbalanced vibration of the rotor, as the primary vibration source dur-
ing operation, has been one a major challenge [10–14]. Wang et al. [10] and
Gao et al. [15] simplified the AMB-rotor system to a single-degree-of-freedom
model and employed an analytical solution method to study displacement vibra-
tion at different rotation frequencies. Other researchers have developed lower-
order models, such as discrete mass models based on the transfer matrix or
four-degree-of-freedom rigid body models. Then, they applied standard meth-
ods such as the fourth-order Runge-Kutta method [11], Newmark-β [12], and
Wilson-θ [12], among others, to obtain the time-domain solution. Finally, they
used the Fourier transform to analyze the frequency domain response. Tang
et al. [13] and Lei and Palazzolo [17] constructed finite element models and
applied modal superposition method to determine the transient response. These
approaches directly reference and apply traditional methods for analyzing un-
balanced vibration in rotors, offering precise physical interpretations and facili-
tating understanding. However, there are some problems with these methods. To
transform the function of electronic control hardware into resultant stiffness and
damping, it is often necessary to simplify the effects of power amplifiers and sen-
sors to constant gains and to replace the controllers with the simplest PD/PID
form [10, 11, 16, 18]. These assumptions may deviate from actual conditions and
result in inaccurate modeling and simulation results. Additionally, these PID pa-
rameters obtained through simulation might not be directly usable, and signif-
icant effort is still needed to tune the parameters experimentally. Furthermore,
the so-called ‘equivalence’ poses challenges for calculating the control signal be-
cause these analysis methods often ignore the coil current calculation during
rotor operation. Conversely, coil current is a significant physical quantity. Low
coil current can lead to poor anti-interference ability. Pursuing a high-rigidity
system to reduce vibration amplitude, at the cost of high coil current, may cause
the power amplifier and coil magnetic field to saturate.

With the help of modern control theory [19, 20], this paper establishes a com-
plete state-space model of the closed-loop system for the magnetic levitation
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rotor controlled by PID. The frequency response equations are derived by con-
sidering the unbalanced force as the system input and g the rotor displacement
and control current as system outputs. The influence of key control parameters
on the unbalanced response is analyzed. Finally, the unbalanced response is ex-
perimentally verified on the prototype test rig for compressors. The excellent
agreement between experiment and simulation results demonstrates the validity
of the modeling and dynamic characteristics analysis methods. This work is of
great significance for the actual commissioning of magnetic levitation compres-
sor in the superfluid helium refrigeration systems.

2. Modeling for Magnetic levitation rotor system

Figure 1 shows the cold compressor model for the third stage in the superfluid
helium refrigeration system. Close to the two radial AMBs are two inductive
displacement sensors. The permanent magnet synchronous motor is centrally
located.

Fig. 1. Sectional structure of magnetic levitation cold compressor.

To systematically develop an appropriate analysis model, we divide the sys-
tem into two parts: the AMB-rotor system and the electronic control system.
The remainder of this section is devoted to discussing the modeling of each
component.
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2.1. AMB-rotor system modeling

Figure 2 presents a photograph of the magnetic levitation rotor for cold com-
pressor. The rotor assembly consists of an internal shaft core, thrust plate, shaft
sleeve, impeller, and other components. The shaft, fabricated from 40Cr steel,
has a diameter of approximately 38 mm. The shaft sleeve includes the silicon
steel laminate of the radial AMB, sensors, and a centrally located motor sleeve.
Both ends of the sleeve are designed with a circular pattern of threaded holes to
detect and counteract unbalanced mass. The motor sleeve, made from samarium
cobalt permanent magnet material, and exhibits an elastic modulus half that of
the shaft.

Fig. 2. Photograph of the magnetic levitation rotor for cold compressor.

Figure 3 presents the finite element model (FEM) of the magnetic levitation
rotor. We build the rotor model based on Timoshenko beam theory. The shaft,
depicted in cyan color, and the motor sleeve, in green are all integrated and
considered as flexible shaft units. The thrust plate, AMB silicon steel sheets,
sensors, impeller, and compression nuts have little impact on the rotor’s lateral
bending. Therefore, they are modeled as rigid discs, colored blue.

Fig. 3. FEM of the magnetic levitation rotor.

When dividing nodes, key positions such as AMBs, sensors, and threaded
holes are designated as primary nodes. The sub-nodes are distributed between
primary nodes to ensure uniform spacing and computational convergence. Fi-
nally, the rotor model with 64 nodes is obtained. Each node is equipped with
two translational and two rotational degrees of freedom (DOF).



6 S. ZHANG et al.

The rotor dynamic equation with MATLAB could be assembled as follows:

(2.1) Mrq̈r + (Cr + ωGr)︸ ︷︷ ︸
Dr

q̇r +Krqr = Fu + Fa,

where qr is the rotor displacement vector, Mr, Cr, Gr, and Kr are the rotor’s
mass matrix, damping, gyroscopic, and stiffness matrices, respectively, ω is the
rotor rotational speed, and Fu and Fa are the unbalanced force and active
electromagnetic forces, modeled below.

The unbalance at points U1 and U2 in Fig. 3 is 1.06 g ·mm and 0.82 g ·mm,
respectively, and their phase angle is 171◦. The unbalanced force fu due to mass
eccentricity can be expressed as:

(2.2) fu (t) = ω2


me1e1 (cosϕ1 + sinϕ1)

me1e1 (sinϕ1 − cosϕ1)

me2e2 (cosϕ2 + sinϕ2)

me2e2 (sinϕ2 − cosϕ2)

 e−jωt,

where me, e, and ϕ represent the unbalanced masses, eccentricities and phase
angles, respectively, t is time, and j is the imaginary unit.

By introducing the conversion matrixTu, related to the nodes where threaded
holes are located, the unbalanced force fu is extended to the generalized unbal-
anced force Fu:

(2.3) Fu = Tufu.

We use radial magnetic bearings with an eight-pole structure. The main
parameters are as follows: the magnetic pole area is A = 246 mm2, the number
of winding turns is N = 93, and the air gaps of the protective bearing and the
radial magnetic bearing are 0.15 mm and 0.35 mm, respectively.

Thus, the four DOF electromagnetic forces provided by the two radial AMBs
are usually expressed with a linear model [2]:

(2.4) fa=
[
4 cos

(π
8

)
µ0ν

2A
] i0
x20

ia +
[
4 cos

(π
8

)
µ0ν

2A
] i20
x30

qa=k
i0
x20

ia + k
i20
x30

qa,

where µ0 is the vacuum permeability, ia and qa are the control current and rotor
displacement, and x0 and i0 are the bias displacement and bias current, respec-
tively. Generally, the bias displacement is the stator center. The bias current
is limited by the bandwidth of the power amplifier and the saturation of the
magnetic field.
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With the electromagnetic force conversion matrixTa, the unbalanced force fa
can be extended to the generalized unbalanced force Fa:

(2.5) Fa = Tafa = Tak
i0
x20

ia +Tak
i20
x30

TT
a qx.

Substituting Eqs. (2.3) and (2.5) into Eq. (2.1) gives:

(2.6) Mrq̈r +Drq̇r +

(
Kr +Tak

i20
x30

TT
a

)
qr = Tak

i0
x20

ia +Tf fu.

2.2. State-space realization of the rotor model

Even without considering the electronic control system, the rotor model in
Eq. (2.6) has 256 states. Such a large model is unwieldy for controller design
and unbalanced response analysis. As low-frequency modes dominate the rotor
vibration, we apply the modal truncation method to describe the dynamic be-
havior [21]. The degree of model reduction should be adapted to the compressor’s
working speed and the rotor’s natural frequency.

Figure 4 shows the Campbell diagram of the open-loop system. The first
two-order rigid modes of the rotor mainly depend on the controller, which will
be discussed later. The first and second bending critical speeds indicated by the
simulation results are 2500 Hz and 4820 Hz, respectively. We conducted rotor
model tests with a force hammer to verify these frequencies. The results shown
in Fig. 5 demonstrate consistency between the experimental results and the
simulation results. The compressor’s rated speed is 833 Hz, significantly lower

Fig. 4. Campbell diagram.
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Fig. 5. Modal test results.

than the first bending critical speed. Ultimately, we retained the first three-order
modes of the rotor model in their entirety.

A regular modal matrix, truncated by the cut-off eigenforms, is applied to
decouple and normalize the rotor’s FEM. The simplified system matrixes are
marked with the subscript

Mre = TT
reMrTre, Dre = TT

reDrTre, Ire = TT
reTak

i0
x20
,

Kre = TT
re

(
Kr +Tak

i20
x30

TT
a

)
Tre, Fre = TT

reTf , qre = Tre qr.

The equations in Eq. (2.6) are decoupled and reduced as follows:

(2.7) Mre q̈re +Dreq̇re +Kreqre = Ire ia + Fre fu.

If we define the state vector xr =
[
q̇re q̇re

]T
, then we can transform

Eq. (2.7) into a state-space form:

(2.8)


ẋr =

[
0

−M−1re Kre
I

−M−1re Dre

]
︸ ︷︷ ︸

Ar

xr+

[
0

M−1re Ire

]
︸ ︷︷ ︸
Bri

ia+

[
0

M−1re Fre

]
︸ ︷︷ ︸

Brf

fu,

yr = Crxr.

The vector yr represents the rotor displacement at sensor locations specified by
the coefficient distribution matrix Cr.
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2.3. Electronic control hardware model

Figure 6 presents the block diagram of the closed-loop control system. The
simulation results depend on model accuracy. Previous research often oversim-
plifies the electronic control hardware, representing its impact on stiffness and
damping as constant gains. Moreover, completed PID controllers are frequently
reduced to PD controllers [10, 11, 14]. However, there is a discrepancy between
the simulation model and the actual situation. To address this, the section es-
tablishes more detailed and accurate models for the controller, power amplifier,
and sensor.

Fig. 6. Closed-loop feedback block diagram of the AMB-rotor system.

Power amplifier characteristics are affected by coil inductance, resistance,
and eddy current [22]. However, the effects of the eddy current are usually small
and can be ignored when modeling. We use Agilent Dynamic Signal Analyzer
35670A to perform a sine sweep, and then the amplitude-frequency character-
istics of the amplifier are experimentally measured, as shown in Fig. 7. The
transfer function of the amplifier model, fitted to the experimental frequency
response, is:

(2.9) Ga (s) =
Kaω

2
a

s2 + 2ξaωas+ ω2
a

s2 − 6
Ta
s+ 12

T 2
a

s2 + 6
Ta
s+ 12

T 2
a

.

The corner frequency ωa is 2300 Hz, the attenuation constant ξa is 1.2, the
gain Ka is 0.79 A/V. A second-order Padé approximation is modeled for the time
delay due to digital-analog conversion and PWM modulation. The time constant
τa is set to 100 µs.

The compressor rotor is rigid, so the PID control method can meet engineer-
ing requirements. To avoid the displacement deviation signal’s infinite amplifi-
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Fig. 7. Frequency characteristic of the power amplifier.

cation at low and high frequencies, we apply a PID controller with incomplete
derivative and incomplete integral, as shown below:

(2.10) Gc (s) = Kp +
Ki

1
2πfi

s+ 1
+

Kds
1

2πfd
s+ 1

,

where fd is the cut-off frequency of the differential term, related to the op-
eration frequency, and is set at 600 Hz, and fi is the cut-off frequency of the
integration, set at 0.75 Hz.

The two most important parameters for the PID controller are the pro-
portional gain Kp and the derivative gain Kd. They determine the stability
and dynamic performance of the rotor. Many studies [2, 10] have examined
the relationship between proportional gain and the resultant stiffness. We as-
sume the resultant stiffness to be 1 to 3 times the displacement stiffness of the
AMB and take the damping ratio of the closed-loop system to be 20% to 70%.
Therefore, we estimate the ranges of proportional gain and differential gain as:
Kp ∈ (0.27, 0.80), Kd ∈ (3 · 10−4, 11 · 10−4).

Differential transformer-type inductance sensors are used to measure rotor
displacement. Low-pass filters are designed to suppress aliasing effects dur-
ing digitization. Within the linear range, the first-order mathematical descrip-
tion of the sensor combing with the low-pass filter is:

(2.11) Gs (s) =
Ks

Tss+ 1
,

where the magnification Ks is 20 kV/m, and the time constant Ts is 5 · 10−5.
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The following state-space equations describe the models of the amplifiers,
controllers, and sensors. To distinguish these models, the subscripts a, c, and s
will be used accordingly.

(2.12)

{
ẋ = Ax+Bu,

y = Cx+Du.

In the above equation, the feedthrough matrices of both the amplifiers and
sensors are zero.

3. State-space realization

The conventional method of solving the unbalanced response involves re-
placing the current signal in Eq. (2.8) with the displacement, based on their
mathematical relationship. Using this approach, the time-domain solution for
displacement can be obtained by applying standard methods for solving par-
tial differential equations [10–13, 15, 16]. However, since the partial differential
equation does not include control signals, this approach complicates solving for
the control signal. This paper establishes a state-space model that includes all
components of the closed-loop system. The variables of interest are extracted
as inputs and outputs, and then the unbalanced response is obtained by solving
the corresponding transfer functions.

3.1. Open-loop system

It is convenient to first calculate the open-loop system model, which will later
help in deriving the closed-loop system model. Figure 8 is the open-loop system,

Fig. 8. Open-loop system model.
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combing the controller, amplifier model, and sensor model with the AMB-rotor
state-space model. The output vectors include the sensor measurement signal ys,
rotor displacement yr, and control signal ya. The state vectors include unbal-
anced forces fu and the controller input signal e. Thus, the state-space equation
of the open-loop system is derived as follows:

(3.1)




ẋs

ẋr

ẋa

ẋc

=

As BsCr 0 0

0 Ar BriCa 0

0 0 Aa BaCa

0 0 0 Ac



xs

xr

xa

xc

+


0 0

Brf 0

0 BaDc

0 Bc


[
fu

e

]
,

 ysyr
ya

 =

 Cs DsBcCr 0 00 Cr 0 0

0 0 Ca 0




xs
xr
xa
xc

.
3.2. Closed-loop system

Figure 9 shows the feedback control block diagram. The displacement devi-
ation signal e is given by:

(3.2) e = r− ys.

By substituting Eq. (3.1) into (3.2), and considering the reference signal r and
the unbalanced force fu as new input vectors, while keeping the state variables
and output variables the same as those of the open-loop system, we derived the
state-space realization form of the closed-loop system as follows:

(3.3) Gcl =


Acl Bclf Bclr

Dclsf Dclsr

Ccl Dclrf Dclrr

Dclaf Dclar



=



As BsCr 0 0 0 0

0 Ar Bri Ca 0 Brf 0

−BaDcCs −BaDcDsBsCr Aa BaCa 0 BaDc
−BcCs −BcDsBsCr 0 Ac 0 Bc

Cs DsBcCr 0 0 0 0

0 Cr 0 0 0 0

0 0 Ca 0 0 0


.
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Fig. 9. Control block diagram within the closed-loop system.

3.3. Closed-loop system identification

To verify the accuracy of the closed-loop system model, a sine frequency
sweep test is conducted. The sinusoidal signal is input at the amplifier’s front
point (marked Tin in Fig. 6). Then, the signal from the controlled object input
terminal (labeled with T1) to the rotor displacement output terminal (marked T2),
is analyzed. The Bode plot of the closed-loop system’s first channel is shown with
the red curve in Fig. 10. The blue curve represents the Bode plot of the corre-
sponding transfer function. It is worth noting that we use the same controller
parameters (Kp = 0.35, and Kd = 0.00060) for both the simulation and the
experiment.

Fig. 10. Model of the magnetic levitation rotor in the closed-loop system.

The figure demonstrates that the models obtained from the simulation and
experiments are relatively well-matched within 2000 Hz. The critical speeds of
rigid bodies obtained by the two methods are 27 Hz and 28 Hz, respectively.
However, this method cannot identify the high-frequency bending modes.

3.4. Calculation of unbalanced response

Based on the above state-space description, the transfer function from the
unbalanced force to the rotor displacement signal, the sensor output signal, and
the control signal can be obtained according as follows:
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(3.4) Gf→y (s) = Ccl

(
Bclf

sI−Acl

)
+

 Dclrf

Dclrf

Dclaf

.
By combing Eqs. (2.3) and (3.4), the system response, including rotor dis-

placement signals yr and control current ya, can be calculated as follows:

(3.5) yfs =

 ys

yr

ya

 = Ccl

(
Bclf

sI−Acl
· fu
)
+

[
Dsf

Dif

]
· fu.

4. Unbalanced response characteristic simulation

The ranges of the controller parameters (Kp ∈ (0.27, 0.80), Kd ∈ (3.0 · 10−4,
11.0 · 10−4)) ensure rotor stable, which can be proved by the Routh-Hurwitz
criterion [8]. According to the AMB structure, the coil current should not exceed
5 A to avoid saturating the magnetic field, which means the maximum bias
current should less than 2.5 A.

A set of control parameters within the above range can be selected as: Kp =
0.35, Kd = 6.0 · 10−4, i0 = 1.4. These parameters are consistent with those used
in the simulation unless explicitly stated otherwise.

The steady-state unbalanced responses calculated by Eq. (3.4) are shown in
Fig. 11. It shows that the vibration distributions at the upper and lower AMB
are very close. The vibrations reach their maximum at 28 Hz, with displacements
and currents peaking at 88/66 µm and 1.92/1.81 A, respectively.

a) b)

Fig. 11. Simulation of the unbalanced response for displacement (a) and current (b).
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Within the rated speed range, the frequency at which the displacement
reaches its maximum can be considered the rigid body critical speed. How these
parameters affect the critical speed and the vibration peak will be discussed in
the following section.

4.1. The effect on critical speed

Figure 12 illustrates the critical speeds varying as a function of Kp and Kd.
Figure 12a shows that as Kp increases from 0.2 to 0.8, the rigid body’s critical
speed increases from approximately 20 Hz to around 53 Hz, and the rate of in-
crease gradually slowing down. This indicates that adjusting Kp can potentially
avoid critical speeds and reduce violent vibrations during run-up, leading to
more stable operation. Furthermore, as Kp increases, a negative correlation be-
tween critical speed and Kd gradually becomes a positive correlation. However,
overall, Kd has little impact on the critical speed for the same Kp.

a) b)

Fig. 12. Critical speeds as a function of proportional gain (a) and differential gain (b).

Figure 12b shows that with an increase in Kd from 0.0002 to 0.0011, the rigid
body’s critical speed remains steady at around 30 Hz. However, beyond 0.0011,
the critical speed becomes extremely sensitive toKd, indicating that within the
proper range, Kd has little effect on the critical speed. However, when Kd is
large, even slight variations can significantly change the critical speed.

4.2. The effect on unbalanced peaks

Figure 13 shows the variation in vibration peaks of the unbalanced response
as a function ofKp. The results indicate that both the displacement and cur-
rent peaks initially increase and then decrease with increasingKp. During this
process, their extreme values decrease with increasingKd.
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a) b)

Fig. 13. Displacement peaks (a) and current peaks (b) of unbalanced response
as a function of Kp.

The variation tendencies shown in Fig. 14 are similar to those in Fig. 13,
where the values first increase and then decrease with increasing Kd. However,
their extreme values increase with increasing Kp, implying that an increase in
Kp aggravates the vibration when Kd is small.

a) b)

Fig. 14. Displacement peaks (a) and current peaks (b) of unbalanced response
as a function of Kd.

Although some experimental results [23, 24] have shown that tuning the
controller can simultaneously reduce both displacement and current response
at the mode frequency, this paper further confirms this phenomenon through
simulation results. It demonstrates that displacement and current are not in
a compromise relationship at the rigid mode. They can be simultaneously sup-
pressed by choosing an appropriate set of control parameters.
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5. Experiment

5.1. Test rig for speed-up experiment

The compressor test rig mainly consists of a cold compressor prototype,
an electronic control hardware system, and a monitoring system, as shown in
Fig. 15. The rotor runs from a static state to 50 000 rpm at a rate of 500 rpm/s.

Monitor 
system

Compressor

Motor 
inverter

Electronic 
control 
hardware

Fig. 15. Test rig for magnetic levitation compressor.

Based on the above simulation results, when Kp ∈ (0.35, 0.50) and Kd ∈
(4.5 · 10−4, 6.5 · 10−4), the rotor can stably levitate and rotate relatively smoothly.
Within these ranges, we select five sets of proportional gains and five sets of dif-
ferential gains and record the rotor’s vibration information during the run-up.

5.2. The effect of proportional gain

Figure 16 shows the displacement and current vibration information in the
x-direction of the upper AMB when the differential gains is kept constant at
6.0 · 10−4, and the proportional gains are 0.30, 0.35, 0.40, 045, 0.50, respectively.
The results show that as the proportional gain increases, the rotor’s rigid body
critical speed increases from 25 Hz to 50 Hz. Both displacement vibration and
current vibration simultaneously decrease at the resonance frequency as the
proportional gain increases. However, the rotor controlled by a high proportional
gain experiences strong vibrations when running at high speeds. This may be
caused by the increase in resultant stiffness and reduced system damping as the
speed increases.



18 S. ZHANG et al.

a) b)

Fig. 16. The unbalanced displacement (a) and current response (b) in the experiment
with different Kp.

5.3. The effect of differential gain

Figure 17 shows the displacement and current vibration information when
the proportional gains are kept constant, and the differential gains are 4.5 · 10−4,
5.0 · 10−4, 6.0 · 10−4, and 6.5 · 10−4, respectively. The results indicate presents
that the critical speed remains around 30 Hz, showing insensitivity to the dif-
ferential gain. Both displacement and current vibration simultaneously decrease
significantly with increasing differential gain at the rigid body frequency. Be-
yond the resonance frequency, the rotor runs stably and is almost unaffected by
either the proportional gain or the differential gain.

a) b)

Fig. 17. The unbalanced displacement (a) and current response (b) in the experiment
with different Kd.
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6. Conclusion

This study utilized the state-space method and PID control strategy to suc-
cessfully develop a closed-loop model for the magnetic levitation rotor system.
This approach significantly improved the system’s frequency response charac-
teristics and control accuracy. Through simulations and experimental methods,
we explored the intuitive relationship between control parameters and system
response, highlighting the advantages of PID control in terms of system stabil-
ity and ease of debugging. This research provides essential theoretical support
and practical guidelines for the deployment and application of cold compressors
in large superfluid helium cryogenic systems. Looking ahead, adaptive control
strategies hold considerable promise for enhancing system responsiveness and
efficiency, particularly well-suited for cold compressors operating in highly spe-
cialized environments. This study lays a solid foundation for future research into
adaptive control solutions that could significantly improve performance under
various operational conditions.
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